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Abstract  

Most of the known mathematical models for dengue epidemics are difficult to 
handle by those with average mathematical skills. Our aim is to show how a 
modeling-centered approach can be useful for understanding a dengue 
epidemic. We studied the applicability of the simplest model for epidemics (the 
SIR model) to real dengue data sets. On the other side, an attempt to 
characterize attractors for dengue data from endemic regions was performed. 
The theoretical possibility to predict the fate of an ongoing epidemic on the basis 
of initial data was explored. We concluded that: 1) The approximation suggested 
by Kermack and McKendrick in the framework of the SIR model is a good one for 
dengue incidence data sets. 2) A model with several isolated foci explains the 
“anomalous” appearance of the Havana (2001) dengue epidemic’s data set. 3) 
Nonlinear identification allowed characterizing a quasiperiodic attractor in Brazil 
data. 4) A simple procedure is introduced to predict the time corresponding to the 
peak value as well as the maximal value of an ongoing epidemics.Taken 
together, our results served to illustrate the validity of a model-centered approach 
to assess dengue incidence data.  

Resumen.  
La mayor parte de los modelos matemáticos para epidemias de dengue son 
difíciles de tratar por personas con conocimientos matemáticos corrientes. 
Nuestro objetivo ha sido mostrar cómo un enfoque centrado en la modelación 
puede ser útil para la comprensión de una epidemia de dengue. Se estudió la 
aplicabilidad del modelo “SIR” (el más simple de los existentes para epidemias) 
a datos reales de incidencia de dengue. Por otra parte, se intentó caracterizar el 
atractor para datos de dengue en una región endémica. Se exploró la posibilidad 
teórica de predecir el curso de una epidemia que está en marcha a partir de sus 
datos iniciales. Se concluye que: 1) La aproximación propuesta por Kermack and 
McKendrick en el marco del modelo SIR es adecuada para caracterizar datos de 
incidencia de dengue. 2) Un modelo con varios focos aislados explica la 
apariencia “anómala” de la epidemia de dengue de La Habana (2001). 3) La 
identificación no lineal permitió detectar un atractor quasiperiódico en los datos 
de dengue en Brasil. 4) Se propone un procedimiento simple para predecir el 
tiempo pico de la epidemia y su valor máximo. En su conjunto, nuestros 
resultados sirven para ilustrar la validez de un enfoque centrado en modelos 
para la evaluacion de datos de incidencia de dengue.  

Introduction  
Dengue is a major health problem across a large geographic area where about 
2.5 billion people dwell.There are about 50-100 million dengue cases annually, 
including 250000- 500000 cases of dengue haemorrhagic fever, the most severe 
manifestation of the disease, and 24 000 deaths (Gibbons and Vaughn, 2002; 
Shope,1991). 
 



With growing population density and global warming, the situation can change 
only to the worst (Patz J A et al., 1998). Figure 1 with Brazil’s incidence data can 
serve as an illustration (Siqueira et al., 2005). Isolated, unpredictable and 
relatively small epidemics in late 1980’s handed over their way to the present 
scenario of large and sustained periodic outbursts with peaks appearing at nearly 
one-year intervals since mid 1990’s.  

 
Figure 1. Brazil dengue incidence data. Notice the scale differences between 

upper and lower graphs. Redrawn from (Siqueira et al., 2005).  
Among specialists, there is agreement that only mass vaccination can curb the 
dengue pandemic (Newton and Reiter, 1992; Derouich et al, 2003). Yet, we still 
lack a vaccine, and there is not certainty regarding its affordability to common 
people when it will be produced. Therefore, alternative approaches should be 
pondered.  
Several decades of experience with epidemic research have shown that 
mathematical models may not always be disparate from reality, but from time to 
time they can be useful (Stark and Hardy, 2003). The present paper is an attempt 
to illustrate, on the basis of available incidence data, how a modeling-centered 
approach can help in understanding dengue epidemics.  

Mathematical models for epidemics  
Mechanistic models have a long history of almost 80 years (Kermack and 
McKendrick, 1927). With developments in nonlinear science since early 1980’s, 
analysis of epidemics using nonlinear identification tools attracted the attention of 
mathematicians as well (Sugihara G and May, 1990; Ellner et al., 1998; Stark 
and Hardy, 2003; Schwartz et al., 2004; Hernández Cáceres et al, 2006).  

Mechanistic models  
Currently, a multiplicity of models for specific epidemics can be found in literature 
(see e.g. Bjørnstad, 2002). With almost no exceptions, they may be regarded as 
variants of a basic proposal developed during the 1920’s: the so called SIR 
(“Susceptible, Infected and Removed”) model.  
In this “simple” case, susceptible individuals entering into contact with infected 
ones have a certain chance to become themselves infected. Once infected, 
individuals further are “removed” from the disease transmission chain. People 
become both noninfectant and noninfectable due to different possible 
mechanisms: end of the disease with acquired immunity, death, quarantine, etc.  
Schematically the SIR model is represented with three compartments and arrows 
corresponding to allowed transitions. Possibilities to transit from one compatment 
into another are quantified via corresponding rate constants (a and r): 



 
This scheme has its mathematical counterpart in the following dynamical system:  

 
Where N is the total number of individuals. From (2), it is easy to see that for an 
epidemic to start the following condition must be granted:  
dI/dt>0,  
Hence,  
rS

0
I-aI>0  

I(rSo –a)>0  
Thus, since I>0, for having an epidemic the amount of susceptibles at the 
beginning must be higher than the quantity  

 
The system (1-4) contains nonlinearities, and its treatment requires significant 
mathematical expertise. Details about ways for finding a solution appear in the 
textbook by Defares and Sneddon (1970). Kermack and McKendrick (1927) 
showed that if the epidemic is “small” it means that (I<<N), then the following 
approximation is valid for the “removal” rate (see Murray (1990) for details).  

 
Where the constants A,B,C>0. All these three parameters are related to the 
constants of the model (1-4).  
In particular,  

 
 
Being  the time at which the maximal value is attained.  



In modelling, simplicity is always advantageous, and thus recommendable. In this 
particular case, the possibility to fit real data with the expression (*) would make 
available an easier and better interpretable analysis. However, the validity of this 
approximation for dengue data needs to be verified.  
Numerical output of a dengue model. 
 
In 2003, Derouich et al proposed a model for dengue fever that incorporates both 
human and mosquito infection and their interactions (see figure 2 for a schematic 
version of their model).  

 
Figure 2. Scheme for the model for dengue fever developed by Derouich et al 

(2003)  
The full model developed by Derouich et al cannot be treated analytically. We 
compared an output of the model’s numerical solution for the rate of removed 
(performed by those authors) with the approximation proposed by Kermack and 
McKendrick (1927). A good fit quality was attained, since more than 99% of the 
variance was explained by the expression (see figure 3).  

 
Figure 3. Fitting the numerical solution of the model by Derouich et al (isolated 

points) into equation (*).  
This result may point to the plausibility of using (*) as a good guess for dengue 
data interpretation.  

Behavior of real data  
A further step is to check the capability of the expression (*) for fitting to real 
data.  
In the case of a health system where notified infected individuals are accurately 
recorded and immediately put into quarantine, the incidence can reliably reflect 
the “removal rate” of the SIR model. We expect that this is true for a number of 



coutries in the risk area where the national health systems are suitably 
structured. As figures 4(a-c) show, real dengue incidence data from different 
origin also can be approximated with the formula proposed by Kermack and 
McKendrick (1927). 

 
Figure 4. Dengue data from different sources fitted with equation (*). Isolated 
dots correspond to real data, smooth lines are the best fit to (*) Original data 

were published at papers by Siqueira et al., 2005; Hayes et al., 2003; and Kouri 
et al 1998  

Departures from the classical scenario: Havana (2001)  
In spite of good accord between some data and theory, disagreements with 
theoretical expectations can also be found. This is the case of the Havana 
dengue epidemic (2001). The poor goodness of fit is apparent from figure 5a. An 
explanation for this departure may be in the inadequacy of the SIR model to 
mimic the mechanisms in force during Havana epidemic. However, this does not 
seem to be the case, since this discrepancy was not at all parts of the curve: 
there was an excellent agreement between theory and the initial phase of the 
outbreak (figure 5b).  



 
Figure 5a. Data for Havana (2001) dengue epidemic (Pelaez et al, 2004). 

Irregular line corresponds to real data, smooth line is the fit with (*). 

 
Figure 5b. Fit of the initial, rising phase of the data from 5a to the expression (*). 

More than 99% of the variance was theoretically explained.  
Havana is a city with more than 2 million residents. Characteristic distances in 
Havana are large enough for considering the possibility of spreading waves to 
develop during the epidemics. Theory (see Murray, 2000) shows that if S

0
>  

traveling waves will appear, and the epidemic would propagate at a speed equal 
to  
V = 2(1-/S

0
)
^1/2 

The value of S0 estimated from the curve in figure 5b is 8531. In a circular area 
with a diameter of 1.25 Km (surface area close to 5 Km

2
) it is expected to find a 

number of susceptibles twice as large. Thus the epidemic would propagate at 1.7 
Km/week.  
The densely populated core of Havana may be roughly represented as being 
nearly circular with a diameter of 30 Km (where ca. 1 400 000 people live). Thus 
the front can be expected to move during 9 weeks expanding as a concentric 
wave. Figure 6 gives us an estimate of what should be expected from this 
uncontrolled propagation. This gives a number of 825292 cases (58%) of the 
population in the area. Being our simplifications too rough, these figures should 
be taken cautiously; however, they do not seem to be far from the truth, since 
during the 1978-1979 epidemics about 25% of the Cuban population was 
affected. In general, it is supposed that outbreaks in urban areas infested with 
dengue's primary mosquito vector, Aedes aegypti, can involve up to 70-80% of 
the populations (Gibbons, 2002).  



 
Figure 6. Simulation of the uncontrolled propagation case.  

Data from figure 5a are differing from those in figure 6 both quantitatively and 
qualitatively. Thus a propagating wave mechanism does not seem to be a 
plausible explanation to observed Havana data. We hypothesize that instead of a 
true propagation, minor scattered local epidemic foci appeared during the 
Havana (2001) epidemics. As documented by Pelaez et al (2004), the epidemics 
started at Playa municipality (most probably due to imported infected(s) from 
endemic overseas areas). Six weeks later it appeared at Arroyo Naranjo, and 
further at  Cerro, Plaza and Diez de Octubre (week 12), followed by outbursts in 
other municipalities at the weeks 14

th 
and 18

th
.  

Thus, Havana data may be the result of a superposition of several foci. We 
readapted the expression (*) to the case of several epidemics with moments of 
onset at different fixed moments (1, 6, 12, 14, 18) and identical values of B and C 
for each peak. The amplitudes were allowed to change to fit into data. The result 
of the approximation is shown in figure 8a. An attempt to separate individual 
peaks via stepwise estimation initially with raw data and then with residuals is 
illustrated in figures 7b-7c. as shown, at least 4 local epidemics are clearly 
identifiable using this approach.  

 
Figure 7a. Havana data approximated according to the multiple foci model. 

Compare with figure 5a.  



 
Fig 7b-c. Result of stepwise estimation of independent epidemics. Apparently the 

epidemics starting at Playa was of relatively low amplitude and longer duration 
(8b) if compared with that starting at the most densely populated municipalities 
(8c). The residual in 8c suggest about the epidemic at Guanabacoa, Regla and 
Cotorro, starting on the 18

th 
week respect to the start. Apparently, a new focus 

appeared aroud week 26
th
. 

 
As appreciable, this hypothesis yields a much better fit. Higher agreement 
apparently can be found if data were taken with larger details and a smaller 
number of parameters were hold fixed.  
Thus, Havana data cannot be regarded as an evidence for an anomalous 
mechanism, but rather as the result of a very efficient strategy to curb the spread 
of the epidemic across the city. If we compare the number of real cases (~15000) 
with the expectations for an uncontrolled spread, a huge number of persons were 
prevented from the disease.  
 

Data from enmdemic regions. Brasil (1994-2003). 
Kernel nonlinear identification has been used to characterize the attractors in 
epidemics time series. This is particularly suitable when the data show 
periodicities (Sugihara and May, 1990; Hernández Cáceres et al, 2006). We 
applied a kernel autoregressive model to the data from Brazil (See Hernandez 
Cáceres et al, 2006 for details about the method). Our results suggest the 
presence of a quasiperiodic attractor (figure 9). The period of bursts is 11 
months, extremely short if compared to the values of about 4 years at the 
previous decade.  
 



 
Figure 8. Application of kernel nonlinear identification analysis to brazil dengue 

data. 
Can we predict the severity of an epidemic from initial data?  

Approximating data to nonlinear expressions requires that the amount of points 
introduced must be much larger than the number of parameters. Time sampling, 
noise presence, etc., may affect the estimation. In the case of the expression we 
are dealing with, our results with both real and simulated data showed that it is 
not possible to obtain reliable estimates of the parameters of the expression (*) if 
only data points corresponding to the first half of the rising phase are taken for 
estimation, This is not surprising due to its nonlinear nature. At the same time, it 
is important for health providers to have good forecasts about an ongoing 
epidemic. We expect that transforming the data in such a way that a linear 
expression will appear may help to this purpose.  
The rationale of our procedure is based on the Taylor decomposition of the 
hyperbolic sinus (the reciprocal of the hyperbolic secant)  
Sin(x)=1+x

2
/2!+x

4
/4!+…  

Making the suitable approximations, and denoting incidence by “Y”, one comes 
to:  
Y

-1/4
=~ N*t-P (**)  

and t=P/N.  
Once t has been estimated, it is possible to predict the maximal value at the peak 
as the reciprocal to the fourth power of the value estimated for (**) when t is a 
fraction of t.  

 
Figure 9. Predicting the fate of an epidemic. Santiago de Cuba data (Kouri et al, 

1998).  



The method is illustrated in figure 9. The peak is predicted to be at 12, whereas 
real data suggest a value between 10 and 12. Even when more points fit to the 
line, using only the first 4 data points are enough for drawing a reliable trace. On 
the other hand, the value corresponding to the maximal value is at 8 (67% of the 
estimate of t. We analyzed this method for a data set with 1 simulated curve and 
5 curves from real epidemics from literature. The results are summarized in table 
I.  

Data  t 
real

t 
est

%dif t 
max

t 
max

/t 
est 

(%)  
Sampling

Venezuela  15 13 15 9  60  Weeks
Theoretical 
model.  

50 50 0  35 70  Days

Santiago de 
Cuba  

11 12 9  9  75  Weeks

Havana  12 12 0  9  75  Weeks
El Salvador  8  9 13 6  67  Weeks
Brazil  6  8 25 5  67  Months

 
Table I. Comparison of real data with predictions of (**).  

As data from table I revealed, as average, a 10% difference is obtained for 
estimates of t 

max
. The time corresponding (t 

max
) is expected as average at 70% 

of t 
est

.  
 
This approach is particularly useful if data are collected weekly or even with a 
shorter sampling time. Since only 4 data points of an epidemic are required, this 
can provide reliable estimates of what is expected for about 2 months ahead.  

Discussion.  
Our results revealed that dengue incidence data as well as output of specific 
models for dengue can be reliably described with the expression proposed for 
Murray as an approximation for the case of the basic SIR model. This nicely 
simplifies data treatment and interpretation. On the other hand nonlinear 
estimation methods seem to provide useful information when dengue becomes 
endemic in a given region. The sad experience with Brazil in recent years points 
to the idea that this is not an odd possibility. 
 
On the other hand, we proposed a method to predict the fate of a starting 
epidemic. It would be interesting to check its reliability in real field conditions.  
An apparent corollary from our studies is that for proper handling of data, these 
must be properly sampled at both spatial and temporal scales. As our 
computations revealed, a dengue epidemic can appear in an urban area with 
nearly 5 Km

2
. Thus a city like Havana could be sampled into about 100 sectors. 

This is the approximate number of health areas into which the city’s health 
administration is divided to. Sampling at larger scales would mean computing at 



the same time both local epidemics and propagating waves. As result, if 
spreading does exist, we obtain wider and taller peaks. This seems to be the 
case of Brazilian bursts that last for about one year.  
Regarding time sampling, even when daily data may be unrealistic, to try to 
check our predictions with data taken every 3 days would be advised.  
Analysis of Havana data led us to another matter of practical importance: How to 
assess the impact of a certain health action? In literature there are attempts to 
address these issues (Kaninda et al, 2000). It seems that the possibility for an 
epidemic to spread has not been thoughtfully considered in most of those 
studies.  
Taken together, our results served to illustrate the validity of a model-centered 
approach to assess dengue incidence data.  

Conclusions.  
1. The approximation suggested by Murray (1990) in the framework of the 

SIR model is a good one for both specific models of dengue, as well as for 
real dengue incidence data sets.  

2. The model with several isolated foci explains Havana data better than the 
classical SIR scenario.  

3. Nonlinear identification allowed characterizing a quasiperiodic attractor in 
Brazil data.  

4. Using a very simple procedure it is possible to predict the time 
corresponding to the peak value as well as the maximal value of an 
ongoing epidemics.  
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